Numerical simulation of heat and mass transfer in direct contact membrane distillation in a hollow fiber module with laminar flow
نویسندگان
چکیده
The heat and mass transfer processes in direct contact membrane distillation (MD) under laminar flow conditions have been analyzed by computational fluid dynamics (CFD). A two-dimensional heat transfer model was developed by coupling the latent heat, which is generated during the MD process, into the energy conservation equation. In combination with the Navies-Stokes equations, the thermal boundary layer build-up, membrane wall temperatures, temperature polarization coefficient (TPC), local heat transfer coefficients, local mass fluxes as well as the thermal efficiency, etc. were predicted under counter-current flow conditions. The overall performance predicted by the model, in terms of fluxes and temperatures, was verified by single hollow fiber experiments with feed in the shell and permeate in the lumen. Simulations using the model provide insights into counter-current direct contact MD. Based on the predicted temperature profiles, the local heat fluxes are found to increase and then decrease along the fiber length. The deviation of the membrane wall temperature from the fluid bulk phase on the feed and the permeate sides predicts the temperature polarization (TP) effect. The TP coefficient decreases initially and then increase along the fiber length. It is also found that the local Nusselt numbers (Nu) present the highest values at the entrances of the feed/permeate sides. Under the assumed operating conditions, the feed side heat transfer coefficients h f are typically half the h p in the permeate side, suggesting that the shell-side hydrodynamics play an important role in improving the heat transfer in this MD configuration. The model also shows how the mass transfer rate and the thermal efficiency are affected by the operating conditions. Operating the module at higher feed/permeate circulation velocities enhances transmembrane flux; however, the thermal efficiency decreases due to the greater heat loss at a higher permeate velocity. The current study suggests that the CFD simulations can provide qualitative predictions on the influences of various factors on MD performance, which can guide future work on the hollow fiber module design, module scale-up and process optimization to facilitate MD commercialization.
منابع مشابه
CO2 Capture by Dual Hollow Fiber Membrane Systems
In this paper, a system for efficient removal of carbon dioxide by hollow fiber membranes is proposed. The system is compact, and it is very useful for application in the offshore energy industries. In particular, it is used to removing CO2 from the exhaust of power generation facilities on offshore platforms.The proposed dual membrane contactor contains two types of membranes (polypropylene me...
متن کاملNumerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids
This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...
متن کاملModeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids
Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...
متن کاملAnalysis on Hollow Fiber Membrane Heat Exchanger Applying to the Lithium Bromide Absorption Refrigeration System
The aim of this work is to bring forward a new style heat exchanger about hollow fiber membrane module, and to analyze the performance which can expectantly be applied in the lithium bromide absorption refrigeration system. Polyvinylidene fluoride hollow fiber membrane module was adopted as the new style solution heat exchanger, hot feed solution from the generator flowed into the lumen side of...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کامل